Cerebral Autoregulation-Directed Therapy in Adults with Non-Traumatic Brain Injury in Neuro-Critical Care: A Scoping Review
Main Article Content
Abstract
Cerebral Autoregulation (CA)-directed therapy, or optimal cerebral perfusion pressure (CPPopt)-targeted therapy, is a tailored bedside method of resuscitation used in critical care that aims to achieve and maintain the CPPopt, to fit the precise cerebral hemodynamics and metabolic demand. Different processes and multiple tools are available to conduct a CA-directed therapy in acute brain-damaged adult admitted into critical care settings, but literature is limited and primarily focused on traumatic brain injury; however, for other brain conditions. By this scope review, we aim to describe the main procedures used by authors to achieve a CA-directed therapy, as well as its acquisition methods and its usefulness in acute non-traumatic brain-damaged adult in neurocritical care.
Article Details
Copyright (c) 2025 Haimeur Y, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Ragauskas A, Daubaris G, Petkus V, Ragaisis V, Ursino M. Clinical study of continuous non-invasive cerebrovascular autoregulation monitoring in neurosurgical ICU. Acta Neurochir Suppl. 2005;95:367–70. Available from: https://doi.org/10.1007/3-211-32318-x_75
Ritzenthaler T, Reminiac F, Dequin PF, Guitton C, Mallédant Y, Seguin P. New neuromonitoring tools. Resuscitation. 2015;24:498–508. Available from: https://link.springer.com/article/10.1007/s13546-015-1099-6
Rivera-Lara L, Zorrilla-Vaca A, Geocadin R, Ziai W, Healy R, Thompson R, et al. Predictors of outcome with cerebral autoregulation monitoring: A systematic review and meta-analysis. Crit Care Med. 2017;45(4):695–704. Available from: https://doi.org/10.1097/ccm.0000000000002251
Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, et al. Consensus summary statement of the international multidisciplinary consensus conference on multimodality monitoring in neurocritical care. Neurocrit Care. 2014;21(Suppl 2):S1–26. Available from: https://doi.org/10.1007/s00134-014-3369-6
Rivera-Lara L, Zorrilla-Vaca A, Geocadin RG, Healy RJ, Ziai W, Mirski MA. Cerebral autoregulation-oriented therapy at the bedside: a comprehensive review. Anesthesiology. 2017;126:1187–99. Available from: https://doi.org/10.1097/aln.0000000000001625
Robertson C, Valadka AB, Hannay HJ, Contant CF, Gopinath SP, Cormio M, et al. Prevention of secondary ischemic insults after severe head injury. Crit Care Med. 1999;27:1086–95. Available from: https://doi.org/10.1097/00003246-199910000-00002
Hemphill JC III, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, et al. American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology. Guidelines for the management of spontaneous intracerebral hemorrhage: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46:2032–60. Available from: https://www.ahajournals.org/doi/10.1161/str.0000000000000069
Connolly ES Jr, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, et al. American Heart Association Stroke Council; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; Council on Cardiovascular Surgery and Anesthesia; Council on Clinical Cardiology. Guidelines for the management of aneurysmal subarachnoid hemorrhage: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2012;43:1711–37. Available from: https://doi.org/10.1161/str.0b013e3182587839
Porto GB, Spiotta AM, Chalela JA, Kellogg RT, Jauch EC. Blood pressure guideline adherence in patients with ischemic and hemorrhagic stroke in the neurointensive care unit setting. Neurocrit Care. 2015;23:313–20. Available from: https://doi.org/10.1007/s12028-015-0116-y
Carney N, Totten AM, O'Reilly C, Ullman JS, Hawryluk GW, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80(1):6–15. Available from: https://doi.org/10.1227/neu.0000000000001432
Depreitere B, Citerio G, Smith M, Adelson PD, Aries MJ, Bleck TP, et al. Cerebrovascular autoregulation monitoring in the management of adult severe traumatic brain injury: A Delphi consensus of clinicians. Neurocrit Care. 2021;34(3):731–8. Available from: https://doi.org/10.1007/s12028-020-01185-x
Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews: Checklist and explanation. Ann Intern Med. 2018;169(7):467–73. Available from: https://doi.org/10.7326/m18-0850
Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8. Available from: https://doi.org/10.1097/00003246-200204000-00002
Ang BT, Wong J, Lee KK, Wang E, Ng I. Temporal changes in cerebral tissue oxygenation with cerebrovascular pressure reactivity in severe traumatic brain injury. J Neurol Neurosurg Psychiatry. 2007;78:298–302. Available from: https://doi.org/10.1136/jnnp.2005.082735
Zweifel C, Lavinio A, Steiner LA, Radolovich D, Smielewski P, Timofeev I, et al. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008;25:E2. Available from: https://doi.org/10.3171/foc.2008.25.10.e2
Radolovich DK, Aries MJ, Castellani G, Corona A, Lavinio A, Smielewski P, et al. Pulsatile intracranial pressure and cerebral autoregulation after traumatic brain injury. Neurocrit Care. 2011;15:379–86. Available from: https://doi.org/10.1007/s12028-011-9553-4
Aries MJ, Czosnyka M, Budohoski KP, Kolias AG, Radolovich DK, Lavinio A, et al. Continuous monitoring of cerebrovascular reactivity using pulse waveform of intracranial pressure. Neurocrit Care. 2012;17:67–76. Available from: https://doi.org/10.1007/s12028-012-9687-z
Lewis PM, Smielewski P, Rosenfeld JV, Pickard JD, Czosnyka M. Monitoring of the association between cerebral blood flow velocity and intracranial pressure. Acta Neurochir Suppl. 2012;114:147–51. Available from: https://doi.org/10.1007/978-3-7091-0956-4_27
Budohoski KP, Czosnyka M, de Riva N, Smielewski P, Pickard JD, Menon DK, et al. The relationship between cerebral blood flow autoregulation and cerebrovascular pressure reactivity after traumatic brain injury. Neurosurgery. 2012;71:652–60. Available from: https://doi.org/10.1227/neu.0b013e318260feb1
Schmidt B, Reinhard M, Lezaic V, McLeod DD, Weinhold M, Mattes H, et al. Autoregulation monitoring and outcome prediction in neurocritical care patients: Does one index fit all? J Clin Monit Comput. 2016;30:367–75. Available from: https://doi.org/10.1007/s10877-015-9726-3
Kirkness CJ, Mitchell PH, Burr RL, Newell DW. Cerebral autoregulation and outcome in acute brain injury. Biol Res Nurs. 2001;2:175–85. Available from: https://doi.org/10.1177/109980040100200303
Steiner LA, Coles JP, Czosnyka M, Minhas PS, Fryer TD, Aigbirhio FI, et al. Cerebrovascular pressure reactivity is related to global cerebral oxygen metabolism after head injury. J Neurol Neurosurg Psychiatry. 2003;74:765–70. Available from: https://doi.org/10.1136/jnnp.74.6.765
Hiler M, Czosnyka M, Hutchinson P, Balestreri M, Smielewski P, Matta B, et al. Predictive value of initial computerized tomography scan, intracranial pressure, and state of autoregulation in patients with traumatic brain injury. J Neurosurg. 2006;104:731–7. Available from: https://doi.org/10.3171/jns.2006.104.5.731
Jaeger M, Schuhmann MU, Soehle M, Meixensberger J. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med. 2006;34:1783–8. Available from: https://doi.org/10.1097/01.ccm.0000218413.51546.9e
Johnson U, Nilsson P, Ronne-Engström E, Howells T, Enblad P. Favorable outcome in traumatic brain injury patients with impaired cerebral pressure autoregulation when treated at low cerebral perfusion pressure levels. Neurosurgery. 2011;68:714–21. Available from: https://doi.org/10.1227/neu.0b013e3182077313
Howells T, Johnson U, McKelvey T, Enblad P. An optimal frequency range for assessing the pressure reactivity index in patients with traumatic brain injury. J Clin Monit Comput. 2015;29:97–105. Available from: https://doi.org/10.1007/s10877-014-9573-7
Jaeger M, Dengl M, Meixensberger J, Schuhmann MU. Effects of cerebrovascular pressure reactivity-guided optimization of cerebral perfusion pressure on brain tissue oxygenation after traumatic brain injury. Crit Care Med. 2010;38:1343–7. Available from: https://doi.org/10.1097/ccm.0b013e3181d45530
Ries MJ, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456–63. Available from: https://doi.org/10.1097/ccm.0b013e3182514eb6
Depreitere B, Güiza F, Van den Berghe G, Schuhmann MU, Maier G, Piper I, et al. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data. J Neurosurg. 2014;120:1451–7. Available from: https://doi.org/10.3171/2014.3.jns131500
Dias C, Silva MJ, Pereira E, Monteiro E, Maia I, Barbosa S, et al. Optimal cerebral perfusion pressure management at bedside: A single-center pilot study. Neurocrit Care. 2015;23:92–102. Available from: https://doi.org/10.1007/s12028-014-0103-8
Weersink CS, Aries MJ, Dias C, Liu MX, Kolias AG, Donnelly J, et al. Clinical and physiological events that contribute to the success rate of finding “optimal” cerebral perfusion pressure in severe brain trauma patients. Crit Care Med. 2015;43:1952–63. Available from: https://doi.org/10.1097/ccm.0000000000001165
Zweifel C, Castellani G, Czosnyka M, Helmy A, Manktelow A, Carrera E, et al. Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients. J Neurotrauma. 2010;27:1951–8. Available from: https://doi.org/10.1089/neu.2010.1388
Lang EW, Kasprowicz M, Smielewski P, Santos E, Pickard J, Czosnyka M. Short pressure reactivity index versus long pressure reactivity index in the management of traumatic brain injury. J Neurosurg. 2015;122:588–94. Available from: https://doi.org/10.3171/2014.10.jns14602
Panerai RB, Kerins V, Fan L, Yeoman PM, Hope T, Evans DH. Association between dynamic cerebral autoregulation and mortality in severe head injury. Br J Neurosurg. 2004;18:471–9. Available from: https://doi.org/10.1080/02688690400012343
Sorrentino E, Budohoski KP, Kasprowicz M, Smielewski P, Matta B, Pickard JD, et al. Critical thresholds for transcranial Doppler indices of cerebral autoregulation in traumatic brain injury. Neurocrit Care. 2011;14:188–93. Available from: https://doi.org/10.1007/s12028-010-9492-5
Lewis PM, Smielewski P, Rosenfeld JV, Pickard JD, Czosnyka M. Monitoring of the association between cerebral blood flow velocity and intracranial pressure. Acta Neurochir Suppl. 2012;114:147–51. Available from: https://doi.org/10.1007/978-3-7091-0956-4_27
Lang EW, Mehdorn HM, Dorsch NW, Czosnyka M. Continuous monitoring of cerebrovascular autoregulation: A validation study. J Neurol Neurosurg Psychiatry. 2002;72:583–6. Available from: https://doi.org/10.1136/jnnp.72.5.583
Lang EW, Lagopoulos J, Griffith J, Yip K, Yam A, Mudaliar Y, et al. Cerebral vasomotor reactivity testing in head injury: The link between pressure and flow. J Neurol Neurosurg Psychiatry. 2003;74:1053–9. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC1738604/
Lewis PM, Smielewski P, Pickard JD, Czosnyka M. Dynamic cerebral autoregulation: Should intracranial pressure be taken into account? Acta Neurochir (Wien). 2007;149:549–55. Available from: https://doi.org/10.1007/s00701-007-1160-y
Cahya E, Hawthorne C, Shaw M. Comparison of cerebral autoregulation models in traumatic brain injury. Br J Anaesth. 2019;122(3):e52–3. Available from: https://www.bjanaesthesia.org/article/S0007-0912(18)30833-X/fulltext
Liu X, Czosnyka M, Donnelly J, Budohoski KP, Varsos GV, Nasr N, et al. Comparison of frequency and time domain methods of assessment of cerebral autoregulation in traumatic brain injury. J Cereb Blood Flow Metab. 2015;35:248–56. Available from: https://doi.org/10.1038/jcbfm.2014.192
Lang EW, Lagopoulos J, Griffith J, Yip K, Mudaliar Y, Mehdorn HM, et al. Noninvasive cerebrovascular autoregulation assessment in traumatic brain injury: validation and utility. J Neurotrauma. 2003;20:69–75. Available from: https://doi.org/10.1089/08977150360517191
Lavinio A, Schmidt EA, Haubrich C, Smielewski P, Pickard JD, Czosnyka M, et al. Noninvasive evaluation of dynamic cerebrovascular autoregulation using Finapres plethysmograph and transcranial Doppler. Stroke. 2007;38:402–4. Available from: https://doi.org/10.1161/01.str.0000254551.92209.5c
Czosnyka M, Smielewski P, Lavinio A, Pickard JD, Panerai R. An assessment of dynamic autoregulation from spontaneous fluctuations of cerebral blood flow velocity: a comparison of two models, index of autoregulation and mean flow index. Anesth Analg. 2008;106(1):234-9. Available from: https://doi.org/10.1213/01.ane.0000295802.89962.13
Highton D, Ghosh A, Tachtsidis I, Panovska-Griffiths J, Elwell CE, Smith M. Monitoring cerebral autoregulation after brain injury: multimodal assessment of cerebral slow-wave oscillations using near-infrared spectroscopy. Anesth Analg. 2015;121(1):198-205. Available from: https://doi.org/10.1213/ane.0000000000000790
Jaeger M, Schuhmann MU, Soehle M, Meixensberger J. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med. 2006;34(6):1783-8. Available from: https://doi.org/10.1097/01.ccm.0000218413.51546.9e
Liu X, Czosnyka M, Donnelly J, Cardim D, Cabeleira M, Lalou DA, et al. Assessment of cerebral autoregulation indices - a modelling perspective. Sci Rep. 2020;10(1):9600. Available from: https://doi.org/10.1038/s41598-020-66346-6
Liu X, Maurits NM, Aries MJH, Czosnyka M, Ercole A, Donnelly J, et al. Monitoring of optimal cerebral perfusion pressure in traumatic brain injured patients using a multi-window weighting algorithm. J Neurotrauma. 2017;34(22):3081-88. Available from: https://doi.org/10.1089/neu.2017.5003
Petkus V, Preiksaitis A, Chaleckas E, Chomskis R, Zubaviciute E, Vosylius S, et al. Optimal cerebral perfusion pressure: targeted treatment for severe traumatic brain injury. J Neurotrauma. 2020;37(2):389-96. Available from: https://doi.org/10.1089/neu.2019.6551
Petkus V, Preiksaitis A, Krakauskaite S, Zubaviciute E, Rocka S, Rastenyte D, et al. Benefit on optimal cerebral perfusion pressure targeted treatment for traumatic brain injury patients. J Crit Care. 2017;41:49-55. Available from: https://doi.org/10.1016/j.jcrc.2017.04.029
Svedung Wettervik T, Howells T, Enblad P, Lewén A. Temporal neurophysiological dynamics in traumatic brain injury: role of pressure reactivity and optimal cerebral perfusion pressure for predicting outcome. J Neurotrauma. 2019;36(11):1818-27. Available from: https://doi.org/10.1089/neu.2018.6157
Zeiler FA, Ercole A, Cabeleira M, Carbonara M, Stocchetti N, Menon DK, et al. CENTER-TBI High Resolution (HR ICU) Sub-Study Participants and Investigators. Comparison of performance of different optimal cerebral perfusion pressure parameters for outcome prediction in adult traumatic brain injury: a collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. J Neurotrauma. 2019;36(10):1505-17. Available from: https://doi.org/10.1089/neu.2018.6203
Svedung Wettervik T, Howells T, Lewén A, Enblad P. Blood pressure variability and optimal cerebral perfusion pressure—new therapeutic targets in traumatic brain injury. Neurosurgery. 2020;86(3):E300-E309. Available from: https://doi.org/10.1093/neuros/nyz515
Riemann L, Beqiri E, Smielewski P, Czosnyka M, Stocchetti N, Sakowitz O, et al. CENTER-TBI High Resolution ICU (HR ICU) Sub-Study Participants and Investigators. Low-resolution pressure reactivity index and its derived optimal cerebral perfusion pressure in adult traumatic brain injury: a CENTER-TBI study. Crit Care. 2020;24(1):266. Available from: https://doi.org/10.1186/s13054-020-02974-8
Howells T, Smielewski P, Donnelly J, Czosnyka M, Hutchinson PJA, Menon DK, et al. Optimal cerebral perfusion pressure in centers with different treatment protocols. Crit Care Med. 2018;46(3):e235-e241. Available from: https://doi.org/10.1097/ccm.0000000000002930
Donnelly J, Czosnyka M, Adams H, Robba C, Steiner LA, Cardim D, et al. Pressure reactivity-based optimal cerebral perfusion pressure in a traumatic brain injury cohort. Acta Neurochir Suppl. 2018;126:209-12. Available from: https://doi.org/10.1007/978-3-319-65798-1_43
Kramer AH, Couillard PL, Zygun DA, Aries MJ, Gallagher CN, et al. Continuous assessment of “optimal” cerebral perfusion pressure in traumatic brain injury: a cohort study of feasibility, reliability, and relation to outcome. Neurocrit Care. 2019;30(1):51-61. Available from: https://doi.org/10.1007/s12028-018-0570-4
Eide PK, Czosnyka M, Sorteberg W, Pickard JD, Smielewski P. Association between intracranial, arterial pulse pressure amplitudes and cerebral autoregulation in head injury patients. Neurol Res. 2007;29(6):578-82. Available from: https://doi.org/10.1179/016164107x172167
Santos E, Diedler J, Sykora M, Orakcioglu B, Kentar M, Czosnyka M, et al. Low-frequency sampling for PRx calculation does not reduce prognostication and produces similar CPPopt in intracerebral haemorrhage patients. Acta Neurochir (Wien). 2011;153(11):2189-95. Available from: https://doi.org/10.1007/s00701-011-1148-5
Diedler J, Santos E, Poli S, Sykora M. Optimal cerebral perfusion pressure in patients with intracerebral hemorrhage: an observational case series. Crit Care. 2014;18(2):R51. Available from: https://doi.org/10.1186/cc13796
Reinhard M, Neunhoeffer F, Gerds TA, Niesen WD, Buttler KJ, Timmer J, et al.. Secondary decline of cerebral autoregulation is associated with worse outcome after intracerebral hemorrhage. Intensive Care Med. 2010;36(2):264-71. Available from: https://doi.org/10.1007/s00134-009-1698-7
Johnson U, Engquist H, Lewén A, Howells T, Nilsson P, Ronne-Engström E, et al. Increased risk of critical CBF levels in SAH patients with actual CPP below calculated optimal CPP. Acta Neurochir (Wien). 2017;159:1065–71. Available from: https://doi.org/10.1007/s00701-017-3139-7
Kranawetter B, Tuzi S, Moerer O, Mielke D, Rohde V, Malinova V. “Optimal cerebral perfusion pressure” in poor grade patients after subarachnoid hemorrhage. Neurocrit Care. 2010;13:17–23. Available from: https://www.nature.com/articles/s41598-024-82507-3
Soehle M, Czosnyka M, Pickard JD, Kirkpatrick PJ. Continuous assessment of cerebral autoregulation in subarachnoid hemorrhage. Anesth Analg. 2004;98(4):1133-9. Available from: https://doi.org/10.1213/01.ane.0000111101.41190.99
Barth M, Moratin B, Dostal M, Kalenka A, Scharf J, Schmieder K. Correlation of clinical outcome and angiographic vasospasm with the dynamic autoregulatory response after aneurysmal subarachnoid hemorrhage. Acta Neurochir Suppl. 2012;114:157-60. Available from: https://doi.org/10.1007/978-3-7091-0956-4_29
Budohoski KP, Czosnyka M, Smielewski P, Kasprowicz M, Helmy A, Bulters D, et al.. Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective observational study. Stroke. 2012;43(12):3230-7. Available from: https://doi.org/10.1161/strokeaha.112.669788
Jaeger M, Soehle M, Schuhmann MU, Meixensberger J. Clinical significance of impaired cerebrovascular autoregulation after severe aneurysmal subarachnoid hemorrhage. Stroke. 2012;43(8):2097-101. Available from: https://doi.org/10.1161/strokeaha.112.659888
Barth M, Woitzik J, Weiss C, Muench E, Diepers M, Schmiedek P, et al. Correlation of clinical outcome with pressure-, oxygen-, and flow-related indices of cerebrovascular reactivity in patients following aneurysmal SAH. Neurocrit Care. 2010;12(2):234-43. Available from: https://doi.org/10.1007/s12028-009-9287-8
Dohmen C, Bosche B, Graf R, Reithmeier T, Ernestus RI, Brinker G, et al. Identification and clinical impact of impaired cerebrovascular autoregulation in patients with malignant middle cerebral artery infarction. Stroke. 2007;38(1):56-61. Available from: https://doi.org/10.1161/01.str.0000251642.18522.b6
Reinhard M, Rutsch S, Lambeck J, Wihler C, Czosnyka M, Weiller C, et al. Dynamic cerebral autoregulation associates with infarct size and outcome after ischemic stroke. Acta Neurol Scand. 2012;125(3):156-62. Available from: https://doi.org/10.1111/j.1600-0404.2011.01515.x
Mypinder SS, Gooderham P, Menon DK, Brasher PMA, Foster D, Cardim D, et al. The burden of brain hypoxia and optimal mean arterial pressure in patients with hypoxic ischemic brain injury after cardiac arrest. Crit Care Med. 2019;47(7):960–9. Available from: https://doi.org/10.1097/ccm.0000000000003745
Pham P, Bindra J, Chuan A, Jaeger M, Aneman A. Are changes in cerebrovascular autoregulation following cardiac arrest associated with neurological outcome? Results of a pilot study. Resuscitation. 2015;96:192-8. Available from: https://doi.org/10.1016/j.resuscitation.2015.08.007
Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39:183-238. Available from: https://doi.org/10.1152/physrev.1959.39.2.183
Enevoldsen EM, Jensen FT. Autoregulation and CO2 responses of cerebral blood flow in patients with acute severe head injury. J Neurosurg. 1978;48:689–703. Available from: https://doi.org/10.3171/jns.1978.48.5.0689
Ibrahim J, McGee A, Graham D, McGrath JC, Dominiczak AF. Sex-specific differences in cerebral arterial myogenic tone in hypertensive and normotensive rats. Am J Physiol Heart Circ Physiol. 2006;290(3):H1081-9. Available from: https://doi.org/10.1152/ajpheart.00752.2005
Enevoldsen EM, Jensen FT. Autoregulation and CO2 responses of cerebral blood flow in patients with acute severe head injury. J Neurosurg. 1978;48:689–703. Available from: https://doi.org/10.3171/jns.1978.48.5.0689
Rangel-Castilla L, Gasco J, Nauta HJ, Okonkwo DO, Robertson CS. Cerebral pressure autoregulation in traumatic brain injury. Neurosurg Focus. 2008;25(4):E7. Available from: https://doi.org/10.3171/foc.2008.25.10.e7
Golding EM, Marrelli SP, You J, Bryan RM. Endothelium-derived hyperpolarizing factor in the brain: a new regulator of cerebral blood flow? Stroke. 2002;33(3):661-3. Available from: https://pubmed.ncbi.nlm.nih.gov/11872883/
Hamel E. Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol (1985). 2006;100:1059–64. Available from: https://doi.org/10.1152/japplphysiol.00954.2005
Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev. 2021;101(4):1487-1559. Available from: https://doi.org/10.1152/physrev.00022.2020
Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41(1):11-7. Available from: https://doi.org/10.1097/00006123-199707000-00005
Czosnyka M, Miller C. Participants in the International Multidisciplinary Consensus Conference on Multimodality Monitoring: Monitoring of cerebral autoregulation. Neurocrit Care. 2014;21 Suppl 2:S95–102. Available from: https://doi.org/10.1007/s12028-014-0046-0
Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol. 1978;234(4):H371-83. Available from: https://doi.org/10.1152/ajpheart.1978.234.4.h371
Tiecks FP, Lam AM, Aaslid R, Newell DW. Comparison of static and dynamic cerebral autoregulation measurements. Stroke. 1995;26(6):1014-9. Available from: https://doi.org/10.1161/01.str.26.6.1014
Smielewski P, Czosnyka M, Steiner L, Belestri M, Piechnik S, Pickard JD. ICM+: software for on-line analysis of bedside monitoring data after severe head trauma. Acta Neurochir Suppl. 2005;95:43-9. Available from: https://doi.org/10.1007/3-211-32318-x_10
Giller CA. The frequency-dependent behavior of cerebral autoregulation. Neurosurgery. 1990;27:362-8. Available from: https://doi.org/10.1097/00006123-199009000-00004
Budohoski KP, Czosnyka M, Smielewski P, Varsos GV, Kasprowicz M, Brady KM, et al. Cerebral autoregulation after subarachnoid hemorrhage: comparison of three methods. J Cereb Blood Flow Metab. 2013;33(3):449-56. Available from: https://doi.org/10.1038/jcbfm.2012.189
Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27(10):1829-34. Available from: https://doi.org/10.1161/01.str.27.10.1829
Moerman AT, Vanbiervliet VM, Van Wesemael A, Bouchez SM, Wouters PF, De Hert SG. Assessment of cerebral autoregulation patterns with near-infrared spectroscopy during pharmacological-induced pressure changes. Anesthesiology. 2015;123(2):327-35. Available from: https://doi.org/10.1097/aln.0000000000000715
Sánchez-Porras E, Czosnyka M, Zheng Z, Unterberg AW, Sakowitz OW. “Long” pressure reactivity index (L-PRx) as a measure of autoregulation correlates with outcome in traumatic brain injury patients. Acta Neurochir (Wien). 2012;154:1575–81. Available from: http://dx.doi.org/10.1007/s00701-012-1423-0